Medium-sized cyclophanes. Part 66.1 Through-space electronic interactions on acylation of 8,16-disubstituted [2.2]metacyclophanes Takehiko Yamato*, Ryo Okabe, Mitsuaki Shigekuni and Tsuyoshi Furukawa

Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga-shi, Saga 840-8502, Japan

Depending on the substituents at the 5-position of 8,16-dimethyl[2.2]metacyclophanes different reactivities to acylation at the 13-position were observed due to the through-space electronic interaction with the other benzene ring.

Keywords: cyclophanes, strained molecules, acylation, through-space electronic interaction

Maquestiau *et al.*² reported formylation of [2.2]metacyclophane (MCP= metacyclophane) with dichloromethyl *n*-butyl ether in the presence of $TiCl₄$ according to the Rieche procedure³ to give 4-formyl[2.2]MCP. This result was different from other electrophilic aromatic substitutions of [2.2]MCP; *e.g.* bromination, iodination, and nitration, which afforded the corresponding 2-substituted 4,5,9,10-tetrahydropyrenes *via* an addition elimination mechanism.4 The relatively late transition state in the formylation of [2.2]MCP compared to other electrophilic aromatic substitution might be proposed to be involved. However, there is no report concerning the acylation of internally substituted [2.2]MCPs. We undertook the present work in order to obtain further information about the chemical behaviour of 5-substituted 8,16-dimethyl[2.2]MCPs. These might forced to form the acylation product because the formation of the 4,5,9,10-tetrahydropyrene by transannular cyclisation is prevented by the 8- and 16- methyl groups. We report here on the acylation reactions of 8,16-disubstituted [2.2]MCPs **1** with acylation reagents.

Results and discussion

When acetylation of 8,16-dimethyl^[2.2]MCP (1a)⁵ with acetic anhydride in the presence of $TiCl₄$ as a catalyst was carried out at 0°C for 5 min, 5-acetyl-8,16-dimethyl[2.2]MCP (**2a**) and 5,13-diacetyl-8,16-dimethyl[2.2]MCP (**3a**) were obtained in 96% and 4% yield, respectively. Prolonging the reaction time of **1a** with acetic anhydride at 0°C increased the yield of the diacetyl compound **3a** or reacting at room temperature for 90 min gave 96% yield.

Thus, the extent of acetylation of **1a** was strongly affected by the reaction conditions used. The present acetylation behaviour of [2.2]MCP **1a** can be explained by the stability of the cationic

Fig.1 The through-space electronic interaction of σ-complex intermediates.

intermediates, which could arise from through-space electronic interaction with the benzene ring located on the opposite side. Thus, a first σ-complex intermediate (**A**) would be stabilized by the through-space electronic intraannular interaction through the 8,16-positions with the opposing benzene ring, thus accelerating the reaction. However, the second electrophilic substitution with the acetyl group can be strongly suppressed in intermediate (**B**) because of deactivation of the second aromatic ring by the acetyl group like in the nitration of 8,16-dimethyl[2.2]MCP (**1a**), which only afforded a mononitration product even under drastic nitration conditions.6

A similar tendency was observed in the acetylation of **1a** with acetyl chloride in the presence of $TiCl₄$ which afforded the monoacylation product **2a** in 86% yield along with the diacylation product **3a** in 12% yield. Interestingly, acylation of **1a** with benzoyl chloride or succinic anhydride in the presence of TiCl₄ as a catalyst was carried out at 0° C for 90 min, also giving mono-acylation products **2b**–**c** in 98 and 96% yields, respectively. No two-fold acylation product was also observed even under the conditions of $AICI_3-MeNO_2$. In contrast, it is shown that in the case of 8,16-dimethoxy[2.2]MCP (**1b**) with acetyl chloride and benzoyl chloride the bis-acylated products

* To receive any correspondence. E-mail: yamatot@cc.saga-u.ac.jp

J. Chem. Research (S), 2003, 608–609 *J. Chem. Research (M),* 2003, 1037–1046

Scheme 2

were obtained in quantitative yields due to the increased π basicity caused by introduction of two methoxy groups.

In order to study the substituent effects on the present acylation reaction by through-space electronic interactions in more detail, we have chosen to investigate the acylation of the 5-substituted 8,16-dimethyl[2.2]MCPs **4** and **2a** (see Scheme 2). In fact, the presently developed procedure was extended to the acetylation of the 8,16-dimethyl[2.2]MCPs **4a**–**e**. 6a The reaction was carried out under the same conditions as described above and the results are summarised in Table 2.

Acetylation of 5-amino-8,16-dimethyl[2.2]MCP (**4a**) with acetic anhydride in the presence of TiCl₄ at 0° C resulted in almost complete acetylation at the 13-position within 5 min to afford 5-acetylamino-13-acetyl-8,16-dimethyl[2.2]MCP (**5b**), which was obtained via *N*-acetylation of **5a** under the reaction conditions used. Complete monoacetylation was also observed in the acetylation of the 5-acetylamino- (**4b**) and 5 trifluoroacetylamino- (**4c**) derivatives. A similar result was obtained in the case of the 5-*tert*-butyl derivative **4d** to afford **5d** in 98% yield. In contrast, compound **2a** which has an electron-withdrawing group (acetyl) afforded the monoacetylation product **3a** only in 12% yield along with recovery of the starting compound **2a** under the conditions used. However, in the case of the 5-nitro derivative **4e**, the desired mono-acetylated product **5e** could not be isolated due to the formation of a mixture of intractable products.

In conclusion we have found that the substituent effect at the 5-position on the reactivities to acylation at the 13-position does exist in 8,16-dimethyl[2.2]MCPs due to the throughspace electronic interaction with the other benzene ring. Further studies on electrophilic substitution of 8,16 disubstituted [2.2]MCPs are currently in progress in our laboratory.

Received 22 May 2003; accepted 5 August 2003 Paper 03/1926

References cited in this synopsis

1 *Medium-sized Cyclophanes*. part 65: T. Yamato, R. Okabe and Y. Yamada, *J. Chem*. *Research (S)*, 2003, 632–634.

Table 1 Acylation of 8,16-dimethyl[2.2]MCPs (**1a**)a

Run	Reagent	Time/min	Product/%b,c	
-1	Ac ₂ O	5	2a (96) [77]	3a(4)
2	Ac ₂ O	30	2a(79)	3a(21)
3	Ac ₂ O	90	2a(69)	3a(31)
4 ^d	Ac ₂ O	90	2a(4)	3a (96) [78]
5	AcCl	90	2a (86) [70]	3a(12)
6	C_6H_5COCI	90	2b (100) [98]	3b(0)
7	Succinic anhydride	90	2c (100) [96]	3c(0)

^aReagent/**1a** = 3.8 mol/1 mol, TiCl₄/Reagent = 3.6 mol/1 mol. bYields are determined by GLC analysis. ^cIsolated yields are shown in square brackets. ^dReaction temperature was 20°C.

Table 2 Acetylation of 5-substituted 8,16-dimethyl[2.2]MCPs (**4**) and (**2a**)a

Run	R		Substrate Product/%b,c	Recovered/% ^b
2	NH ₂	4a	5b (98.6) [83]	4a (1.4)
	NHCOMe	4b	5b (97.8) [92]	4b(2.2)
3	NHCOCF ₃	4c	5c (98.4) [93]	4c(1.6)
4	tBu	4d	5d (97.5) [90]	4 $d(2.5)$
5	COMe	2a	3a(12.0)	2a (88.0) [80]
6	NO ₂	4e	Complex mixture ^d	4e(0)

 $a_{\text{Ac}_2\text{O}/4}$ = 3.8 mol/1 mol, TiCl₄/Ac₂O = 3.6 mol/1 mol. ^bYields are determined by GLC analysis. ^cIsolated yields are shown in square brackets. ^dA large amount of resinous materials and unidentified compounds as formed.

- 2 A. Maquestiau, Y.V. Haverbeke, R. Flammang, M. Flammang-Barbieux and N. Clerbois, *Tetrahedron Lett.*, 1973, 3259.
- 3 A. Rieche, H. Gross and E. Höft, *Chem. Ber.*, 1960, **93**, 88.
- 4 (a) R.W. Griffin, Jr., *Chem. Rev.*, 1963, **63**, 45; (b) B.H. Smith, "*Bridged Aromatic Compounds*", Academic Press, New York, N.Y., 1964; (c) *Cyclophanes* (Eds.: P.M. Keehn and S.M. Rosenfield), Academic Press, New York, 1983, vol. 1, chap. 6, p. 428; (d) F. Vögtle, *Cyclophane-Chemistry*, Wiley, Chichester, 1993.
- 5 (a) M. Tashiro and T. Yamato, *Synthesis*, 435 (1978); (b) M. Tashiro and T. Yamato, *J. Org. Chem.*, 1981, **46**, 1543.
- 6 (a) M. Tashiro, S. Mataka, Y. Takezaki, M. Takeshita, T. Arimura, A. Tsuge and T. Yamato, *J. Org. Chem.*, 1989, **54**, 451; (b) T. Yamato, H. Kamimura and T. Furukawa, *J. Org. Chem.*, 1997, **62**, 7560.